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Current-induced spin torques in III-V ferromagnetic semiconductors
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We formulate a theory of current-induced spin torques in inhomogeneous III-V ferromagnetic semiconduc-
tors. The carrier spin 3/2 and large spin-orbit interaction, leading to spin nonconservation, introduce significant
conceptual differences from spin torques in ferromagnetic metals. We determine the spin density in an electric
field in the weak momentum scattering regime, demonstrating that the torque on the magnetization is inti-
mately related to spin precession under the action of both the spin-orbit interaction and the exchange field
characteristic of ferromagnetism. The spin polarization excited by the electric field is smaller than in ferro-
magnetic metals and, due to lack of angular-momentum conservation, cannot be expressed in a simple closed
vectorial form. Remarkably, scalar and spin-dependent scatterings do not affect the result. We use our results

to estimate the velocity of current-driven domain walls.
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I. INTRODUCTION

Over a decade ago, Slonczewski! and Berger® predicted
that an electrical current induces a torque on the magnetiza-
tion of a ferromagnetic metal, and subsequent research has
since identified distinct contributions called the reactive spin-
transfer torque and the dissipative spin-transfer torque, some-
times referred to as adiabatic and nonadiabatic, respectively.?
Progress on the understanding of this effect in metals has
been steady,* '* and the field has been stimulated by appli-
cations in spintronics and nanotechnology, as a way to ma-
nipulate magnetization and thus information.

Current-induced spin torques arise from a small mismatch
between the spin polarization of conduction electrons and the
magnetization present throughout a material and reflect the
nonlocal nature of magnetization dynamics in inhomoge-
neous systems.'> They are the converse of processes such as
giant magnetoresistance (GMR). The calculation of spin
torques is equivalent to finding the conduction-electron-spin
density in an electric field and in metals they can be easily
expressed as the divergence of the spin current.'* Recently
spin torque-related effects have been investigated in metal-
based systems and nanomagnets, e.g., spin-torque driven fer-
romagnetic resonance,'® spin torques in nanomagnets!” and
in continuously variable magnetizations,'® the s-d interaction
in inhomogeneous ferromagnets,'® current-induced magneti-
zation dynamics,20 and domain-wall motion.?!

Despite these efforts, spin torques have been little studied
in materials displaying some of the richest physics and tech-
nological promise, namely, ferromagnetic semiconductors.
The most intensely studied ferromagnetic semiconductors
are Mn-doped III-V compounds, which fall into two classes:
zinc-blende lattices, such as (Ga,Mn)As, and wurtzite lat-
tices, such as (Ga,Mn)N. The former have been much
investigated?>?* and will be the subject of this work, while
the latter are awaiting further experimental developments.’*
Recent experiments have succeeded in fabricating (Ga,M-
n)As spin-transfer torque devices,”> while domain-wall
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motion2027 and resistance?® have been addressed, and spin-

transfer physics was the subject of a recent review.?’

Ferromagnetic semiconductors differ profoundly from fer-
romagnetic metals. Being p type, the carriers are holes de-
scribed by an effective spin 3/2 and subject to a strong spin-
orbit interaction. The hole spin is thus not conserved. The
band Hamiltonian is the Luttinger Hamiltonian,>® which, in
the spherical approximation, is composed of a series of mul-
tipoles in spin space.’! The hole spin is a dipole, while the
spin-orbit interaction is a quadrupole and the precession of
the spin in a quadrupole field is highly nontrivial.*> Magne-
tism is due to localized Mn moments, with the exchange
interaction mediated by itinerant holes. In the mean-field ap-
proximation this interaction is taken into account as an ef-
fective field (a dipole) acting on the carriers and produces a
splitting comparable in magnitude to the Fermi energy.?> The
combined effect of this dipole exchange field and the quad-
rupole spin-orbit interaction is not a simple additive
problem.?? These materials are often in the weak momentum
scattering limit,” i.e., ep7/> 1, where & is the Fermi en-
ergy and 7 is a characteristic scattering time. Due to the fast
spin precession as a result of the spin-orbit interaction the
relaxation-time approximation is inappropriate to describe
spin dynamics. The carrier spin is not conserved which in-
troduces arbitrariness in the definition of the spin current.’
Therefore, spin torques cannot be identified, as in metallic
systems,'* with the divergence of the spin current. Finally
electrically induced spin densities®* in bulk nonmagnetic
zinc-blende semiconductors are forbidden by symmetry, rais-
ing the question of what form the spin density may take in
such a system when the symmetry is lowered by the magne-
tization.

In this paper we present a general theory of current-
induced spin torques in zinc-blende III-V ferromagnetic
semiconductors. Our study is based on the Luttinger
Hamiltonian®® and it assumes e,7/%> 1, a time-independent
magnetization with small spatial gradients, zero temperature,
no compensation, and short-ranged impurity potentials (jus-
tified by the large carrier densities in ferromagnetic semicon-
ductors and the short-range nature of the exchange
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interaction’?). We take the spin-orbit interaction to be the
dominant term and treat the exchange field in first-order per-
turbation theory. This is a good approximation for the lower
end of Mn concentrations (=2-5 %). We neglect also quan-
tum interference effects such as weak localization.

In recent years a number of microscopic theories of spin
torques in ferromagnetic metals have been developed.''-'* A
common strategy is to begin with a uniformly magnetized
state and consider small perturbations around it. The method
used in this work is slightly different, although the physics is
the same and no difference is expected in the final results.
We assume a magnetization that is a function of position and
has small gradients, and we work to first order in the gradient
of the magnetization. We would like to note that a recent
study was published which considers spin torques in metals
starting from a spin continuity equation.®

The outline of this paper is as follows. Section II contains
a derivation of the kinetic equation that will be used in the
remainder of the paper. We begin from the quantum Liou-
ville equation and project it in momentum space, then intro-
duce so-called Wigner coordinates and derive the equation
satisfied by the Wigner distribution. In Sec. III this equation
is solved in the presence of an electric field, and in Sec. IV
the spin density induced by the electric field is found, which
gives the spin torque acting on the magnetization. The form
and implications of the results are discussed and their appli-
cability to GaMnAs is demonstrated. Finally, the domain-
wall velocity as a result of the spin torque is estimated in
Sec. V.

II. KINETIC EQUATION

The typical setup for a spin-torque experiment consists of
two slabs of ferromagnetic material with noncollinear mag-
netizations, separated by a tunnel barrier. Since the magneti-
zations of the two slabs are noncollinear there is a region
near the interface over which the magnetization changes. To
determine the continuum limit of this setup one can begin by
visualizing a large number of slabs put together, with slight
variations in the direction of the magnetization of each slab.
Then one can imagine the interfaces between the slabs dis-
appearing, leaving one large sample with an inhomogeneous
magnetization, in such a way that the gradient of the magne-
tization varies little over distances comparable to the lattice
spacing. The gradient expansion in the magnetization that
follows from this procedure is valid as long as the length
scale on which the magnetization varies is much longer than
the relevant length scales of the carriers, i.e., the Fermi
wavelength and mean-free path.

Spin torques appear when an electrical current flows
through such a material. In a ferromagnetic semiconductor
the magnetization is a result of the Mn ions which interact by
means of the exchange coupling mediated by itinerant holes.
The holes themselves have a spin polarization, and in equi-
librium the hole spin polarization follows the magnetization.
When an electrical current flows through the sample one can
think, for example, of a hole which is taken from position r,
where its spin is parallel to the local magnetization at r and
transporting it to 7+ or. The magnetization at r+ dr is slightly
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different from the magnetization at r, so a torque is exerted
by the itinerant hole on the magnetization. What makes the
situation in ferromagnetic semiconductors more difficult and
more interesting is that while the hole is moving from r to
r+or it is subject to the strong spin-orbit interaction, which
acts to randomize its spin. In order to determine the effect of
spin-orbit interactions, which are wave vector dependent, on
the itinerant holes and ultimately on the inhomogeneous
magnetization we need to study the kinetic equation, which
takes into account both the momentum dependence and the
position dependence.

In this section we will derive a kinetic equation suitable
for describing inhomogeneous ferromagnetic semiconductors
in an electric field. We consider the system to be described
by a density operator p, which obeys the quantum Liouville
equation

dp i -
—+—[H,p]=0. 1
5] (1)

The total Hamiltonian H contains contributions due to the

band Hamiltonian I:IU, the scalar impurity potential, the ex-
change interaction between delocalized holes and localized
Mn moments, and the electric field. These will be given be-
low. The Liouville equation is projected onto a set of states
|ug,) of definite wave vector k and spin s, which are assumed
to be Bloch functions and eigenstates of the Luttinger Hamil-

tonian ﬁu. The matrix elements of p in this basis are
ps(k,k')=p(k,k’) and are treated as matrices in spin

space. H, is diagonal in k and its matrix elements in this
basis are H,=H, (k) (Refs. 30 and 31)

2

H =—
Y 2m

[w«z o5 220 S>Z)}, @
where S is a vector of spin-3/2 matrices. The term propor-
tional to the Luttinger parameter y, gives the hole kinetic
energy. For k# 0, the term proportional to % separates the
heavy-hole (HH) and light-hole (LH) states, i.e., it is the
spin-orbit coupling that plays a central role in the present
analysis. The Mn?* ions give rise both to a net magnetic
moment, through the hole-mediated exchange interaction,
and to scattering, which has a scalar part and a spin-
dependent part. These are contained in the Hamiltonian Hy;,,

Hyy(r) = 2 [U(r—=R)1+V(r—R))s; - S], 3)
I

where the sum runs over the positions R; of the Mn2* ions,
with s; the Mn spin. We approximate the interactions repre-
sented by Hy, as short ranged, so that U(r—-R;)=US(r-R))
and V(r-R;)=(J,,/V)8(r-R)), with J,, the exchange con-
stant between the localized Mn moments and the itinerant
holes, and V the sample volume. The matrix elements of Hy;,
in the basis {|uys)} are decomposed into a part H,, diagonal
in k, which gives the net magnetization M,
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Y Ny
Hyn = Hyy= =" S = M-S, 4)

where Ny, is the number of Mn?* ions and we assume all
Mn spins polarized setting s;=s, and a part off diagonal in k,
which causes spin-dependent scattering and will be given
below. We will concentrate in this work on the case in which
the exchange splitting is smaller than the spin-orbit coupling
at the Fermi energy, i.e., |M |<27ﬁ2k129/ m, where kj is the
Fermi wave vector, and we work to first order in
m|M|/ (2yh%kz).

In studying inhomogeneous magnetization one must ac-
count for real space as well as wave-vector dependence,
which is accomplished by defining a Wigner distribution.
The Wigner function corresponding to the one-particle den-
sity matrix p(k,k') is

3
fq(r)= J a Q3 e p(g + Q12,4 - Q12), (5)
Q2w

where ¢=(k+k’)/2 and Q=k—k’. The next step is to derive
an equation describing the time evolution of the Wigner dis-
tribution f,(r). The kinetic equation for the Wigner function
f=f,(r) is obtained by projecting the quantum Liouville
equation onto the basis states |u,), then making the transfor-
mation (5). The Hamiltonian H is diagonal in wave vector.
The first step, in which no approximations have been made,
gives us the Liouville equation in terms of the so-called
Wigner coordinates ¢ and Q,

o, i &0 .,
;tq * h We ¢ "(Hy,pg,q_ = Pg,q Hy)

i &0 o
:_%EI (2’”_)36“;2 (Uq+Kqu__pq+KUKq_)~ (6)

To obtain a transparent kinetic equation it is necessary to
expand H, around the wave vector ¢, which requires some
care. In this paper we are working in a basis in which the
functions depend on the wave vector ¢ and we require a
formulation of the kinetic equation that is manifestly gauge
covariant. This means that the kinetic equation should not
acquire additional terms if the basis functions are subjected
to a g-dependent rotation. The end result of this requirement
is that ordinary g derivatives are replaced by covariant de-
rivatives (r derivatives, denoted by V, remain unchanged
since the basis does not have position dependence.) The co-
variant ¢ derivative is defined by 1%5 = g'g —i[R,f], where the

. . L .
gauge connection matrix RSS,=(qu|z—ZfI’—>. All these imply
that in our derivation we must replace the ordinary
derivatives by covariant derivatives. Expanding H,

- +

~H,* %%—q‘l Eq. (6) can be written as

af, i 1 | DH,
-9, _ e —4
o ﬁ[H“’f"]+ Zﬁ{ Dq Vf"}

i &0 o
=_£Ef (27T)3elQ (Uq+Kqu__pq+KUKq_)’ (7)

where { } denotes an antisymmetrized dot product, that is the
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symmetrized scalar product between vectors a and b is given
by {ab}=a-b+b-a. The scattering term represented by the
right-hand side (RHS) is dealt with in the Appendix.

In a constant and uniform electric field the total Hamil-
tonian contains an additional term containing the electromag-
netic potential V=¢E -7, where F is the position operator. This
term is diagonal in real space. Following the spirit of the
derivation presented above, this term appears on the right
side of the kinetic equation in the same way as U and is
expanded as follows:

if e
) 2m)?

- 1 Df,
i0r ~_ — L 2Jgq
e q,|[V.pllg-) Y Dq’ (8)

The spatial gradient of the external electrical potential is
equal to the electric field —VV=E. In this work we will be
studying the response of the system to linear order in the
electric field.

When formulating a kinetic equation, which takes into
account the variation of the Wigner function in real space as
well as in momentum space, it is necessary to single out the
length and wave-vector scales relevant to the problem under
study. In the work at hand we consider carriers which are
delocalized in real space and are described by Bloch states,
for which the wave vector is a good quantum number. Nev-
ertheless it must be borne in mind that the carrier occupies a
finite range of real and momentum spaces, denoted by Ar
and Agq, respectively, which are determined in such a way as
to be consistent with the Heisenberg uncertainty principle. In
the course of a scattering event in which a carrier with wave
vector ¢ interacts with the potential of an impurity and its
wave vector changes from ¢ to k, it is necessary as well as
physical to assume that the wave-vector spread Ag associ-
ated with the carrier size is much smaller than the typical
momentum transfer in scattering processes x—gqg. Further-
more, it is assumed that the magnetization M varies over
length scales much larger than interatomic separations. With
these assumptions, the kinetic equation in an electric field E
takes the form (in agreement with the form found by Carru-
thers and Zachariasen3°)

of i 1] D
a . Z[H,+ Hyof1+ E{D—q(HU +H,,) Vf}

at h
1 Df
_{Vde_}

_2ﬁ Dq +J(f)=EE’ (9)

where 3 p=—¢E-(Df/Dq) is the covariant form of the usual

source term due to E. The term Ji (f) represents the scattering
term, which is discussed in detail in the Appendix. The scat-
tering term takes into account the effect of the potential 4,
which represents the part of the Hamiltonian Hy;, which is
off-diagonal in wave vector. An explicit form for the scatter-
ing term will be given below when we discuss the solution of
the kinetic equation in an electric field.

III. SOLUTION OF THE KINETIC EQUATION

The equilibrium distribution f, is the solution to Eq. (9)
in the absence of external fields, 2;=0. To leading order in
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|UJ? this solution is fo,=fo(H,+H,,), with f, the Fermi-Dirac
function. It is straightforward to check that this form of the
Wigner function satisfies the kinetic Eq. (9) when the RHS is
equal to zero. The form of his solution shows that in equi-
librium the spin polarization of the holes follows the magne-
tization of the Mn, which is contained in the exchange part
of the Hamiltonian H,,,.

Next, in the linear-response regime, we search for a solu-
tion of the Kinetic equation for nonzero 2, which will yield
the spin density induced by E. Since the spin density induced
by the electric field will be a function of position and will in
general not be parallel to the local magnetization, this will
immediately give the spin torque exerted by the conduction
holes on the magnetization. The method we use to solve the
kinetic equation is as follows. First, we divide every matrix
M in the problem into M "+ M, where M™ has elements
only within the HH and LH subspaces, while M“* has ma-
trix elements only between these subspaces. Schematically
this can be summarized by

Ve (in oout)‘ (10)

out in

One compelling advantage of this decomposition is that
commutators and anticommutators of matrices belonging to
either the in or out sectors do not mix these sectors. The
following list covers all the possible combinations of com-
mutators and anticommutators of matrices belonging to ei-
ther the in or the out sectors

[in,out] = out,
[in,in]=in
[out,out] = out,
{in,out} = out,
{in,in} =in

{out,out} =in. (11)

Another advantage of this decomposition is that it aids us in
constructing a physical picture of spin torques and their re-
lation to spin precession. The decomposition into an in and
an out sector in effect singles out spin precession as a result
of the spin-orbit interaction. The in sector of the density
matrix represents spins that are stationary under the action of
the spin-orbit interaction or alternatively the fraction of the
spins that are in eigenstates of H,. The out sector on the
other hand represents spins that precess under the action of
the spin-orbit interaction. This decomposition determines
which spin torques are due to the hole spin precession,
which, unlike the precession of spin-1/2 electrons, cannot be
attributed to an effective magnetic field.’> Being in the weak
momentum scattering regime £,7/% > 1, we do not consider
scattering in the out sector or between the in and out sectors
(it can be shown that both of these terms yield corrections
linear in |U|?). The Wigner function f has two parts, f in the
in sector and f°* in the out sector, and the kinetic equation is
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broken down into two coupled equations for f* and f°“,

f” i.[H'” fn]+J(f1n) 2 +2f£9

(12a)

(9‘](0141

o (12b)

l[Hm fout] 20ut+2¢g)£4t'
There are two source terms in each equation, namely, Ei” and
37 in the in sector and X3 and 3% in the out sector. To
obtain these source terms one needs to expand all quantities
in the gradient of the magnetization and keep terms to zeroth
and first order in this gradient. To zeroth order in the gradient
of the magnetization the source terms are 34/
=(eE/h)(Df,q/ Dg)"™", which are found simply by taking
3 defined above and substituting f, for the Wigner func-
tion. When the expansion is continued to the next order, the
source terms linear in the gradient (gr) of the magnetization

are
1 D out l DHoul
Em - Hout f( [ Vjvut
2% Dq 27| Dq
LD (130)
2k | Dgq ’ 4
1 Do 1 | DH™ i
out _ ___ VH""—— ¢ - — \vj ut % Hout, ut
2w 2ﬁ{ Dq } 2ﬁ{ Dq r } ﬁ[ F

+f1].
To obtain Eq. (12) we have assumed a small spatial gradient
VH=VH,,; implying a small variation SM <|(M)| and we
worked, as stated, to first order in m|M|/(2¥h%k%). After
some simplifications we obtain for the scattering term acting

on f"

(13b)

Al in _fin T2 m* [ dQ’
I = f—Tf f

_s nl"
+ - f e

H),) - q‘?f< —H,;d>],

(14)

(F" = ") (H g~

where the bar is an average over directions in momentum
space, 7' =Ny |UPPm*q/ (Vah®), f=f(g,0,4), and f’
=f(q,0,¢’), 8 and ¢ are the polar and azimuthal angles of

" (analogously for ¢), and m™ is the carrier effective mass,
which is m/(vy,—-27%) in the HH subspace and m/(y,;+2%) in
the LH subspace.

For simplicity and without loss of generality we choose
Elly and (M)IZ so that M, (r) <M._(r). We solve Eq. (11) as
follows. The equation for f* is first solved with 39 as the
initial source, and the solution f%* thus obtained 1s substi-
tuted into Eg“’ and E’" The equatlon for f" is solved in an
analogous fashion. The solutions to the equations for f™ and

7 involve expressions of the form e " Ae=iH" 1 and fout
is easily found. This is because in the out sector the product
eH" 1 Afoutg=iH" IR contains only functions of time of the
form sin wt and cos wt, with w=2%75¢*/m the energy differ-
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ence between the HH and LH bands when the magnetization
is zero. The steady-state solution for f°* therefore involves
only a straightforward time integral of the kind customarily
encountered in linear-response theories. The equation for f
takes more effort due to the presence of the scattering term
and we only summarize the method here (it is described in
detail in a recent publication by two of us’’). The in sector
represents the part of the Wigner function that is stationary
under the action of H,. Nevertheless, the full Hamiltonian is
H,+H,, and the commutator [H"ﬁ,, £™] is not zero. In a man-
ner s1m11ar to the decomposmon of finto f" and fo, fin
itself is split into a part that commutes with H " and a part
that does not. It can be shown®’ that the commutmg part
yields a correction to the Wigner function that is linear in 7
while the noncommuting part gives a correction that does not
depend on 7. However, we find that all contributions to f
average to zero over directions in momentum space except
f‘””. This implies that all contributions from f™ average to
zero over directions in momentum space. f”“ gives rise to a
spin density S that is independent of scattermg It is dis-
cussed in detail below.

IV. SPIN TORQUES

The only contribution to the spin density in an electric
field comes from fg". The three components of the spin den-
sity S that this correction to the Wigner function yields are

eEm"*( oM, M,

Sx=_%(7],\ _gx )’ (153)
€r

eEsm'"*( oM, oM,

S, = _—3?2 77y Py - p (15b)
eE:,m”z M.
S=—735 n (15¢)
&y dy

These equations are the central result of our work. The di-
mensionless quantities 7; and ;, with i=x,y,z, are functions
of the Luttinger parameters y; and . For GaMnAs we find
(all X107%) 7,=7.=3.66, 7,=5.52, {,=11.56, and {,=6.16.
The steady-state spin density is not collinear with the mag-
netization, so there will be a torque on the magnetization
giving a precession frequency of magnitude de|S|. Taking
p=12x10%* cm™, E,=100 kV/m, and estimating the
change in the magnetization as 20% over one lattice spacing,
the time scale of this precession is 200 ns—Iess than in met-
als, but M itself is also typically 1 order of magnitude
smaller.

A. Discussion

The fact that the spin torque comes only from or “ implies
that the steady-state spin density is due to precession under
the action of both the spin-orbit interaction and the exchange
field. The fraction of the spins that is conserved, which
would yield a term o7, gives a contribution that averages to
zero in momentum space. The quantities #; and {; decrease
with increasing spin-orbit interaction (given by ), suggest-
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ing the spin-orbit interaction reduces the spin torque. This
agrees with the finding that there is no electrically induced
spin density in the corresponding nonmagnetic systems,*
i.e., in the limit of large spin-orbit interaction 7. This limit is
equivalent to restoring the spherical symmetry of the Lut-
tinger Hamiltonian of Eq. (2), which in ferromagnetic semi-
conductors is broken by the magnetization.

An important difference from ferromagnetic metals is
that, in Eq. (15), there is no contribution from scattering,
either scalar or spin-dependent. This fact indicates that the
dominant spin torque in ferromagnetic semiconductors in the
weak momentum scattering limit is intrinsic. This observa-
tion agrees with the results of Jungwirth et al.,*® who studied
the anomalous Hall effect in ferromagnetic semiconductors
in the regime ,7/#>1 and found similarly that the role of
scattering is secondary. It is also related to the absence of
electrically induced spin polarization in bulk nonmagnetic
zinc-blende materials. Generally, such a spin polarization is
due to the fraction of spins that is conserved®” and is linear in
7, but this spin polarization is forbidden by symmetry in
zinc-blende lattices.>* The magnetization breaks the cubic
symmetry of the lattice and gives a steady-state spin density,
but the term linear in 7 still averages to zero. We come back
to the comparison of our result to the result found for ferro-
magnetic metals in Sec. IV B.

We find that an electric field E||X corresponds to the per-
mutation x<«y in Eq. (15). Yet for a given orientation of E,
unlike in ferromagnetic metals, in ferromagnetic semicon-
ductors there is no symmetry between the different compo-
nents of the spin density for the following reason. In metals
spin is conserved and spin torques can be derived phenom-
enologically directly from the Landau-Lifshitz-Gilbert equa-
tion (the so-called book-keeping argument®!''). One assumes
an itinerant spin passes a localized moment at r, lines up
with it, then moves on to another moment at r+ Jr, and ex-
erts a torque on this moment. This relates M(r+ ) to M(r)
and gives a simple vector-product form for S(r)."""'* In fer-
romagnetic semiconductors the spin-orbit interaction acts to
randomize the itinerant spin moving between r and r+ dr,
and there is no simple relationship between M(r+ dr) and
M(r). Such a book-keeping argument is thus not valid and
there is no symmetry in the final expression for the spin
density.

We would like to comment on one last aspect of the rela-
tionship between the hole spin polarization and the magneti-
zation in ferromagnetic semiconductors. The calculation pre-
sented in this work relies on a mean-field description of the
magnetization and hole spin polarization. In this picture the
itinerant holes are subject to an average magnetic field due to
the Mn?* ions and the Mn?* ions in turn are subject to the
itinerant hole spin polarization, which can also be regarded
as an average magnetic field.?? Since it is assumed that the
spin-orbit interaction has spherical symmetry, there is no
easy axis for the magnetization in the absence of an electric
field. However, once the electric field is applied it is natural
to ask whether the direction of the electric field provides an
easy axis for the magnetization, in other words whether the
magnetization in the direction of the electric field increases.
We find that this indeed is true, but the increase in the mag-
netization is second order in the ratio H,,/er and is not
significant.
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In ferromagnetic metals, in which spin-orbit coupling is
negligible, angular momentum is conserved. As a result spin
torques in these materials can be encapsulated into a set of
simple, compact, rotationally invariant vectorial expressions.
In ferromagnetic semiconductors, in which spin-orbit inter-
actions are usually the dominant energy scale, angular mo-
mentum is not conserved and the final expressions for the
spin torques cannot be expected to have rotational invari-
ance. In principle spin-orbit interactions, which couple the
spin and the lattice, should give magnetic anisotropy and
anisotropic spin torques as well. The anisotropy in our result
for the spin density is thus a direct result of the intrinsic
spin-orbit interactions.

B. Parameters and applicability for GaMnAs

We shall assume a doping

=1.2x10% cm™,  corresponding  to  x=22%, J,4
=54 meV nm? as discussed in Ref. 22 and the lattice con-
stant a=5.6533 A. The Fermi energy is found as

2 3/2 2 3/2
( n;ilfp) +( n;;?) =37n,

density  nyp,=p

h2
ep=1.633—0Bm*n)??=2.1x 1072 J, (16)
2m0

and the heavy- and light-hole Fermi wave vectors are
k,=1.43%10° m~! and k,=0.55X 10° m~!. The heavy-hole
and light-hole masses are m,=0.538 X107 kg and m,
=0.076 X 1073° kg. These numbers also give the magnitude
of the effective field |H, |=nyn/,i{Syn)=2.52X 107" 7,
meaning that the ratio |H,,|/ep=0.12, so it is safe to do
perturbation theory.

We also want to work out gx7,/fi. The Fermi energy is
2.1x 107 J, which means ez7,/>1 for any momentum
scattering time 7,=5X 107" s. For example for &p7,/f
~10 we require 7,=5X 107'* s, corresponding to a light-
hole mobility of approximately 1000 cm?/Vs and a heavy-
hole mobility of approximately 200 cm?/Vs. Thus the
theory is on very firm ground even for extremely low mo-
bilities.

V. DOMAIN-WALL MOTION

As an application of the central result in Eq. (15) we
calculate the spin torque on a domain wall and the resulting
domain-wall velocity. We choose the current and variation of
magnetization in the y direction. Furthermore, we use
7.= 17, such that Eq. (15) reduces to

eE.m'?n. 0 )
S= 32 ﬂx_[M‘*(ﬁ_l)Myy}, (17)
ep”  dy My

with ¥ a unit vector in the y direction. The spin-transfer
torque that acts on the magnetization is given by

oM J
— =_2MS. 18
(9t current ﬁz ( )

Using Eq. (15) we rewrite this as an equation for a unit
vector €2 in the direction of magnetization, i.e.,
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M=nyJpaSmn€2, With Sy, =5/2 the spin of one Mn atom.
We find that

L9}
ot

Jd
- vﬂ—[(u (172 - 1)9@], (19)
J 7y ’

current y

with the velocity v given by

12, 12
_ nMneEm 77)@‘I,nlsMn
- 2 32
h-ep

(20)

The result for the current-induced torques in Eq. (19) has the
form of an anisotropic dissipative spin-transfer torque.!' The
reactive spin-transfer torque contribution is equal to zero.
These results are understood by noting that we have consid-
ered strong spin-orbit interactions and that have done pertur-
bation theory in the magnetization.

It is common to define a dissipative coefficient'""!> 8 such
that v ~ Bj, with j the current density. Because our result for
the spin-transfer torque is independent of 7 and because
j~ 7, we would find that 8~ 1/, i.e., resistivitylike. This is
somewhat surprising as recent studies*’ indicate that the Gil-
bert damping constant «, which is believed to be similar
though not exactly equal to 8, predominantly has intraband
contributions that are conductivitylike. However, a direct
comparison is not possible because in the present paper we
perform an expansion in the magnitude of the magnetization
whereas Ref. 40 calculates a; by determining the transverse
response function.

The velocity v divided by the Gilbert damping constant

provides an estimate for the domain-wall velocity X8 so that

x~ = 1)
agG

Although Sinova et al.®® do not explicitly consider the re-
gime of parameters quoted in Sec. IV, their calculations®
(see also Ref. 40) suggest that the Gilbert damping is very
small a;~0.001 in this regime. Using this result we find

that X~1 m/s, in agreement with experimental results for
the domain-wall velocity.?”

To investigate more quantitatively the effect of the aniso-
tropy in the spin-transfer torque, determined by the ratio
71,/ 1., we consider specific model for a magnetic domain
wall. We consider a thin film, in which there is a constant
hard-axis anisotropy K, perpendicular to the film and an
easy-axis anisotropy K. Within the model for a rigid domain
wall proposed by Tatara and Kohno*! (see also Ref. 42), the
domain wall is described by two collective coordinates: the
position X(7) and the chirality ¢(z). The chirality is the angle
with which the magnetic moment in the center of the domain
wall tilts out of the easy plane. Using the results from Refs.
41 and 42 we find the equations of motion for the domain-
wall collective coordinates. They are given by

X . K,
—-aghy= ?sm 2y,

N (22a)
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(1+aHhX
A
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1
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FIG. 1. (Color online) Average drift velocity as a function of the
applied electric field and for 8=1/3 (solid line) and 5=0 (dashed
line).

. X
o+ agy (1+ 8cos? ¢y), (22b)

v
A

where A= \TKE is the width of the domain wall. Note that &
goes to zero for 7,— 7,. Note that, in addition usual dissi-
pative spin-transfer torque contribution to these equations
discussed in earlier work,*'*? we find a chirality-dependent
anisotropic contribution proportional to 6. The above equa-
tion can be solved analytically. From this we obtain the av-
erage drift velocity as a function of the applied electric field,
as shown in Fig. 1.

From this figure, we observe a Walker-breakdown-like
behavior,*® i.e., the domain-wall velocity reaches a maxi-
mum and then becomes smaller. Physically, the breakdown is
due to the transition of rigid motion to precessional motion
of the domain wall and is well known from field-driven
domain-wall motion. Our results are understood from the
fact that dissipative spin-transfer torque enters the equations
of motion for the domain wall in the same way as an external
magnetic field. Note that the anisotropy ¢ alters the result for
the domain-wall velocity somewhat with respect to the iso-
tropic (6=0) situation, but plays no qualitatively important
role.

As a final remark, we note that in the calculations pre-
sented here we have neglected the effects of finite
temperature*? and pinning of the domain wall. This, in addi-
tion to the fact that the experiments of Yamanouchi et al.?’
are in a different regime of doping than considered here,
makes a direct quantitative comparison not possible.

VI. CONCLUSIONS

In conclusion, we have established a microscopic theory
of spin transfer in III-V ferromagnetic semiconductors for
the case of strong spin-orbit coupling. We have applied our
results to the case of current-driven domain-wall motion and
have estimated the resulting domain-wall velocities. We find
domain-wall velocities that are of the same order of magni-
tude as experiments, although the available experimental
results®’ are in a different regime of parameters than consid-
ered in this paper. Therefore, a more quantitative comparison
between theory and experiment is at present not feasible.
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APPENDIX: SCATTERING TERM

The scattering term J(f) is

A N, n “ Ie A T A A
J(f) = =5 lim f dr' e [U,e M (U, fe ],
h n—0 0

(A1)

with 7 a regularization factor and the impurity average
(H‘l{,‘[’r:H}’(,;I‘{>q#q,=NMn|U|2(Jl+ I',), where Ny, is the number of
Mn impurities and I';=/J> (s-8)?/(|{U]*V?). The derivation of
this general form of the scattering term is discussed in a
recent paper’? and the notation will be explained in detail
below. In terms of the Wigner distribution the scattering term
can be expressed as

o

4 NN d3K ' —7][’ —iH 1’
J%)*? o), dt'e™ Uye™ " (Upgf g = fUg)

 piHlyt’ _ Mn

&k fxdt'
#* ) @2mil,

Xe " e M (Uyf o= f1Ugi )€ Uy

(A2)

We must note that, in the approximation we are using, the
scattering term acts only on f, which brings about some
simplifications. These become apparent if we look at the ex-
plicit form of this term and note that, because it involves
only £, this term commutes with the time evolution opera-
tors

AL v d3K fm !
J(F™) = dt'e™™
=% | Garl,

< U(e—iHKz’ Uein"ffI'l _ft;:te—iHKt' UeiHlI”)

Gy d3K foc gy ot
_ dt/ nt lHqt U
12 ) @mp), e

XeiHKt'f;:l _ﬂ‘lne—inz’ UeiHKz’)U_ (A3)

In the approximation used in this paper, the Hamiltonian en-
tering the scattering term is the projected 2 X2 Hamiltonian
for each subspace. The scattering potential has two parts: one
a scalar and one which is spin dependent. Taking into ac-
count also the exchange splitting of the bands, there are three
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contributions to the scattering term: scalar potential + kinetic

energy (Ejo),
(=J,), and scalar potential + exchange energy (=J,). The
former two sum up to

spin-dependent potential + Kkinetic energy

jO(fin) + '}m(fin)
_ 2mmnyy, h2k?

. . ﬁ2q2>
A (2?({mf} Ufv )(%f_zw

I’anm*q ’ 1 2 dn in' )
= Q' - -
et | @wﬂ}mu

_nMnm Q( {Uan} Ufm >_ (%{F’f;n}_m)’

| UPPm"q

1_
T k3

and U=|U

F’

fir= ﬁf aQ'fir. (A4)

We have used the notation f;”,E f™(q,Q"). |U? is a scalar
and I' is a dimensionless matrix, which is written as
I'=1+T, with I';=1/2I'- o. Notice that I'; has angular de-
pendence because we are in the basis of eigenstates of the
Luttinger Hamiltonian. Thus these two contributions to the
scattering term can be rewritten as

jO(f) + jm(f)

=1[%a+nﬂﬂ—@+nym+nq
7| 2

2
|:f+ (I‘s+%>sf _G+{Fs’f}+rsfrx):|

2

- 1
= +-3YT.+—,
HEE 2f

l— 11—
- _{Fs’f} - _FJFA (AS)
T T

We think of 7as a characteristic scattering time. The explicit
form of the potential, determined previously, is

U?=NU1+2als-S)+a’(s - S)*], (A6)
where a=)V/U. Everything must be averaged over the impu-
rity configuration as well as directions in momentum space
and then it needs to be transformed into the eigenstate basis
and projected onto LH and HH. When we do that, the term
linear in « above contains only S, which, when projected
onto LH and HH gives something that averages to zero over
angles. Moreover, the configuration average of I’ f gives
something which, when restricted to the HH and LH sub-

spaces, is proportional to the identity matrix, so contributes
only the scalar part of the scattering term
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2

A A l———e 11—
JO(f) + Jm(f) = - ;{Fv’f} - ;F:frv (A7)

We separate the action of jm on the scalar and spin-
dependent parts n and S of the Wigner distribution f=nl+S.
First on n, which is written as n=n+ v, where v is the aniso-
tropic part

R N — 71—
Jom)+ iy m=(1+T) % =T p—-T20. (A8
T T T
Averaged over impurities l"f gives
FL=NPPISL(ST+S) + 52821 = 0, (A9)

the latter identity being valid because the matrix elements of
the Si2 restricted to the HH and LH subspaces are propor-
tional to the identity matrix. We also need to average I',o;[’;,
for which we note that o;0,0;,=—0; for i # j. Averaged over
1impurities

1
Fso-xl—‘s = Z(F?c - F% - F?) Oy

=—(}-T;-T)a,

~<
-b-l»—

1
ToT, = Z(rg -I;-T)o, (A10)

This tells us that in the term I';ST'; only the average of S,
which we shall call §, survives. Then, writing S =S+ =8

1l
”I
[}

JoS)+J,()="+—=(S+5)- {FY,H} - FSEF_Y.
T T

(A11)

Looking at Egs. (A8) and (A11) we see that if we ignore the
term linear in I'; in each of them then they do not mix the
scalar and spin distributions. We shall work for now in this
approximation, which is justified because the terms omitted
are higher order in the disorder potential. Then we can write

Y
1 1+12
7'7_ r
. = 12 1—
Jo(S) +7,(8)==+—=(S+E) - ST (A12)
T

The contribution to the scattering term due to the exchange
splitting of the bands is

A m* - m" (9]_”
Js(f) = quﬁz(f_f)de ﬁz H
m* [ dQ’ ﬁf’)
— A\ +qg— |H Al3
* quﬁzj 4 (f +q(9q pd ( )
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